반응형
6강 측정과 표집
1. 표집
1) 진위형 문항
확률적 표집방법 | 확률: 어떤 사례가 뽑힐지 모르지만 하나의 사례가 뽑힐 경우의 수 어떤 확률을 바탕으로 전집에서 사례를 표집하는 것 확률을 객관적으로 알 수 있도록 설계하여 사례를 표집하는 것 표본의 대표성 및 동질성을 높이는 방법 통계적 추리와 결과의 일반화가 가능함 무선표집, 체계적 표집, 유층표집, 군집 표집 등이 있음 |
|||
비확률적 표집방법 | 확률을 고려하지 않고 임의적으로 표집하는 것 임의성: 연구자의 주관적 판단, 연구 편의성, 표본추출 가능성 등 표집 과정에 나타나는 오차추정이 불가능한 표집 방법 표본에 대한 통계치로 전집의 모수치를 추정할 수 없음 의도적 표집, 할당표집, 우연적 표집 등이 있음 |
|||
단순 무선표집 | simple random sampling, 무작위 추출방법 확률적 표집 가운데 가장 많이 쓰는 방법 |
|||
무선(random) | 어떤 사상의 발생을 정확히 설명할 수 있는 법칙이 없는 상태 사례 추출에 어떤 순서나 예측가능한 방법이 존재하지 않는 것 사례 추출의 독립성과 동일성의 기회가 있는 것 |
|||
무선표집을 하는 이유 | 전집 특성과 같은 특성을 지닌 표본의 표집(동질성) 전집을 대표하는 집단의 표집(대표성) |
|||
단순 무선표집의 조건 | 사례가 똑같이 뽑힐 기회를 가져야 함 상호독립적인 기회가 보장되어야 함 어떤 사례가 뽑힐 확률이 많거나 적다면 편파(bias)된 표집 |
|||
추출 방식 | 난수표를 이용하는 방식 난수 발생기를 이용하는 방식 |
|||
장점 | 전집을 대표하는 표본 획득 가능 전집의 특성에 대한 사전지식의 불필요 다른 표집방법보다 적용하기가 쉬움 |
|||
단점 | 전집 특성에 대한 지식이 있을 경우 활용이 곤란 전집의 소수사례가 가진 특성의 반영이 불가 동일한 크기의 표집일 경우 유층표집보다 표집오차가 더 큼 |
|||
예 | - 5세 유아 100명 표집 | |||
유층표집 | stratified sampling 전집 특성을 하위집단으로 구분하고 하위집단 내에서 무작위 추출 특성을 기준으로 나눈 하위집단을 유층(strata)이라고 함 유층의 특성 기준: 성별, 거주지역, 교육수준, 종교 유층표집의 종류: 비례 유층표집, 비비례 유층표집 |
|||
유층표집을 하는 이유 | 전집이 어떤 특성으로 확연히 구별되는 것을 반영할 수 있음 반영된 집단에서 표집하면 전집 특성을 더 반영하는 표본 가능 |
|||
비례 유층표집 | 표본의 크기를 전집의 구성 비율과 같게 만드는 것 전집을 중요하다고 생각되는 특성으로 구분함 |
|||
비비례 유층표집 | 표본 크기를 전집의 구성비율을 보장하지 않는 것 필요한 수만큼 각 집단에 뽑는 것 |
|||
예 | - 유치원 교사 경력에 따른 표집 구성 - 비례 유층표집: 유치원 교사 경력 구성 비율을 바탕으로 표집 - 비비례 유층표집: 각 집단에서 필요하다고 여겨지는 수만큼 표집 |
|||
장점 | 전집의 중요 특성을 고려하여 표집하여 대표성이 높음 같은 크기의 표본을 표집할 때 단순 무선표집보다 표집오차가 작음 하위집단들의 특성에 따라 서로 비교할 수 있음 |
|||
단점 | 전집의 중요특성과 하위집단의 구성비율에 대한 사전지식이 필요 분류상의 오류를 범할 가능성이 있음 비비례 유층표집의 경우 표집이 편파될 가능성이 높음 |
|||
군집표집 | cluster sampling 군집: 이미 형성되어 있는 자연적인 집단 군집의 예: 서울, 부산, 강남구, 서초구 등의 행정조직, 학교 |
|||
군집 | 자연적으로 형성되어 있음(개별 요소가 묶인 집단) | |||
유층 | 연구자가 인위적으로 특성에 따라 전집을 나눔 | |||
표집 방법 | 이미 형성된 여러 군집에서 필요한 몇 개의 군집을 추출함 군집을 단위로 추출하므로 무선화나 유층 개념이 적용되지 않음 |
|||
예 | - 목적: 유치원 자녀를 둔 부모의 자녀 양육실태에 대해 조사 - 표집방법: 서울시 . 강남구 . 100개 유치원 . 10개 유치원 표집 |
|||
장점 | 시간과 경비를 절약할 수 있음 비교적 간단히 표집을 할 수 있음 |
|||
단점 | 군집 수가 적을수록 표집오차가 커짐(단순 무선표집보다 오차가 큼) 독립적 표집이 이루어지지 않으므로 통계적 추리 적용이 문제 |
|||
단계적 표집 | stage sampling 군집표집의 변형 여러 가지 표집방법을 이용하여 전집에서 표집하는 것 최종 표본을 얻기 위해 여러 단계를 거쳐 표집하는 것 1차 표집단위 선정 → 2차 표집단위 선정 및 표집 |
|||
예 | 목적: 유치원 자녀를 둔 부모의 자녀 양육방법에 대해 연구 표본: 500명 방법: 서울시 . 5개구 . 5개 유치원 . 유치원에서 20명 |
|||
체계적 표집 | systematic sampling 단순 무선표집 방법의 변형 전집 전체 구성원에 일련번호를 붙이고 일정한 간격에 따라 표집 전집 구성이 특별한 순서없이 배열되어 있어야 함 |
|||
예 | 전집 사례수를 표본 사례수로 나눔(예: 1만명 ÷ 100명 = 100) 나눈 값을 표집 간격으로 정함(표집간격 = 100) 전집의 사례에 일련번호를 붙임 맨 처음의 사례는 무선적으로 뽑음 이후부터 순서에 있는 사례를 표집간격만큼 무선표집 최종적으로 필요한 수만큼의 사례를 뽑음 |
|||
의도적 혹은 목적적 표집 | purposive sampling 적합한 사례라고 여겨지는 표본을 주관적으로 추출하는 것 연구자의 주관적 판단에 근거하여 의도적으로 표집 판단표집이라고도 함 대표적이라 믿는 사례만을 의도적으로 표집함 연구자의 과거 경험이나 식견에 근거하여 이루어지는 표집 표본이 전집 특성을 잘 보여준다는 대표성을 가정하는 표집 연구자의 주관이 잘못되면 문제점(연구자의 편견: bias)이 나타남 |
|||
할당표집 | quota sampling 전집을 몇 개의 하위집단으로 구성하여 각 집단에서 표본 수를 할당하여 표집 유층표집의 유층으로 나누는 것까지는 동일 비확률적으로 표집하므로 유층표집과는 다름 |
|||
예 | - 목적 : 유아의 부모 양육태도와 창의성의 관계에 관한 연구 - 표집방법 : 유아나이, 성별, 부모양육태도(유층) → 각 20명씩 표집 |
|||
우연적 표집 | accidental sampling 특별한 계획없이 손쉽게 구할 수 있는 곳에서 표집하는 것 대중매체 기자들이 길거리에서 행하는 즉석 인터뷰 연구에서는 잘 쓰지 않음 |
|||
편리표본추출 | convenience sampling 비확률적 표집 중 목적적 표집이 편리표본추출과 동일함 대상을 가까이에서 편리하게 구할 수 있기 때문에 붙여진 것 연구자가 연구대상과 가까이 있거나 잘 알고 있을 경우 활용 |
2. 측정과 척도
1) 측정의 개념
측정 | 측정에 의해 얻어지는 수치 어떤 장치를 이용해서 물리적인 양을 수치로 나타내는 것 일정한 양을 기준으로 하여 같은 양의 크기를 재는 것 사물 또는 그들 관계에 일관성있게 숫자를 부여하는 것 추상적인 구성이나 개념, 변인을 구체적인 수치로 수량화하는 것 |
측정과정과 측정수준이 포함되는 것 | 측정과정: 측정을 시작해서 수치를 부여하는 전체적인 과정 측정수준: 측정의 결과로 얻어진 숫자들이 가지는 성질 |
측정 대상의 양을 측정량, 측정으로 얻어지는 수는 측정치 | |
측정치 | 측정에 의해 얻어지는 수치 |
측정치의 특징 | 같은 숫자라 하더라도 측정의 수준에 따라 같은 숫자가 되지 않음 측정의 수준에 따라 수리적 조작이 달라짐 측정은 본질적으로 분류의 과정임 측정에는 조작적 정의가 필요함 |
양적 측정과 질적 측정 | 양적측정: 어떤 특성을 수량화 점수화하는 것 질적측정: 범주형 데이터를 갖는 것, 산술적 가치를 가지지 않는 것 |
2) 척도의 개념
척도 | 어떤 특성을 수량화하기 위해 체계적 단위를 가지고 특성에 숫자를 부여한 것 본래 질적인 내용을 지닌 속성을 수량적인 변수로 바꾸어 놓은 것 검사도구가 가지고 있는 논리적 수준 신뢰성과 타당성을 필요로 함 척도의 종류 : 명명, 서열, 동간, 비율척도 |
|
명명척도 | 어떤 현상을 단순히 구분하여 지칭하는 수 분류를 나타내는 수 질적 측면에서 차이를 드러내는 상호배타적인 범주적 속성 가감승제가 되지 않음 백분율, 최빈치는 구할 수 있음 - 예: 출석번호, 축구선수 등번호, 빈도, 사건발생 수 등 |
|
서열척도 | 순위, 비중 등의 상대적 중요성을 표시하는 척도 순위와 등가(같은 숫자 내에서의)의 성질을 가짐 명명척도의 성질을 포함하지만 동간성은 없음 차이만 보여줄 뿐 얼마만큼의 차이인지를 나타내지를 않음 가감승제가 가능하지 않음 - 예: 교장: 1, 교감: 2, 주임: 3, 평교사: 4 |
|
동간척도 | 측정의 일정한 단위를 가지고 있음 각 측정단위 사이의 간격이 동일함 측정단위가 명명성, 서열성, 동간성을 가짐 절대 영점을 가지고 있지 않음 가감이 가능함 - 예: 온도계, 성취도 검사점수, 준비도 검사 점수 |
|
비율척도 | 절대영점을 가지고 있음 명명성, 서열성, 동간성 등을 가짐 연속적인 특징을 가진 수 가감승제의 수리적 계산이 가능함 - 예: 길이, 무게, 시간 사회과학 검사에서는 이런 척도가 거의 없음 - 사회과학에서 음수(-)는 기본적으로 나올 수 없음 - 예: 연령, 지능지수 등은 음수로 표현할 수 없음 |
3)척도 수준에 대한 적용의 예
질문지 조사 | 연구대상의 일반적인 배경정보는 명명척도 | |
귀하의 성별은? ①남 ②여 귀하의 연령은? ①20대 ②30대 ③40대 ④50대 귀하의 교사경력은? ①1년-3년 ②3년-5년 ③5년-7년 ④7년 이상 대답: 성별 ①, 연령 ②, 경력 ③의 대답은 분류를 위한 수 |
||
질문 형식의 검사척도 | 동간척도 | |
귀하의 보수는 어떻다고 생각하십니까? | 아주 만족한다 만족한다 만족하지 못한다 아주 만족 하지 못한다 | |
아주 만족한다: 4점 만족한다: 3점 만족하지 못한다: 2점 아주 만족하지 못한다: 1점 |
||
응답자의 인식을 알아보는 질문지 | 유치원 전통놀이교육의 필요성으로 가장 적합하다고 생각하는 것? ①전통문화의 계승을 위해서 ②미래사회의 발전을 위해서 ③우리나라의 정체성 형성을 위해서 ④세계화의 한가지 방법이므로 응답자의 대답이 ③이라고 가정함 분석 방법: ③을 체크한 응답자가 몇 명인지 빈도를 헤아려 보고함 55명은 ③, 25명은 ①, 20명은 ②, 10명은 ④라면 이들 숫자는 빈도 |
반응형
'교육평가' 카테고리의 다른 글
유아교육학과, 보육교사 필수과목 유아교육평가 요점 정리 8. 관찰법 (0) | 2022.09.07 |
---|---|
유아교육학과, 보육교사 필수과목 유아교육평가 요점 정리 7. 평가도구의 양호도 (0) | 2022.09.06 |
유아교육학과, 보육교사 필수과목 유아교육평가 요점 정리 5. 문항 제작과 분석 (0) | 2022.09.05 |
유아교육학과, 보육교사 필수과목 유아교육평가 요점 정리 4. 교육평가의 방법 및 절차 (0) | 2022.09.05 |
유아교육학과, 보육교사 필수과목 유아교육평가 요점 정리 3. 교육평가의 유형 (0) | 2022.09.04 |